Percolation model with continuously varying exponents.
نویسندگان
چکیده
This work analyzes a percolation model on the diamond hierarchical lattice (DHL), where the percolation transition is retarded by the inclusion of a probability of erasing specific connected structures. It has been inspired by the recent interest on the existence of other universality classes of percolation models. The exact scale invariance and renormalization properties of DHL leads to recurrence maps, from which analytical expressions for the critical exponents and precise numerical results in the limit of very large lattices can be derived. The critical exponents ν and β of the investigated model vary continuously as the erasing probability changes. An adequate choice of the erasing probability leads to the result ν=∞, like in some phase transitions involving vortex formation. The percolation transition is continuous, with β>0, but β can be as small as desired. The modified percolation model turns out to be equivalent to the Q→1 limit of a Potts model with specific long range interactions on the same lattice.
منابع مشابه
THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL
The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...
متن کاملDirected percolation in asynchronous elementary cellular automata: a detailed study
Cellular automata are widely used to model natural systems. Classically they are run with perfect synchrony, i.e., the local rule is applied to each cell at each time step. A possible modification of the updating scheme consists in applying the rule with a fixed probability, called the synchrony rate. For some particular rules, varying the synchrony rate continuously produces a discontinuity in...
متن کاملPercolation in Media with Columnar Disorder
We study a generalization of site percolation on a simple cubic lattice, where not only single sites are removed randomly, but also entire parallel columns of sites. We show that typical clusters near the percolation transition are very anisotropic, with different scaling exponents for the sizes parallel and perpendicular to the columns. Below the critical point there is a Griffiths phase where...
متن کاملPercolation approach to glassy dynamics with continuously broken ergodicity.
We show that the relaxation dynamics near a glass transition with continuous ergodicity breaking can be endowed with a geometric interpretation based on percolation theory. At the mean-field level this approach is consistent with the mode-coupling theory (MCT) of type-A liquid-glass transitions and allows one to disentangle the universal and nonuniversal contributions to MCT relaxation exponent...
متن کاملChange in order of phase transitions on fractal lattices
We reexamine a population model which exhibits a continuous absorbing phase transition belonging to directed percolation in 1D and a first-order transition in 2D and above. Studying the model on Sierpinski Carpets of varying fractal dimensions, we examine at what fractal dimension 1 ≤ d f ≤ 2, the change in order occurs. As well as commenting on the order of the transitions, we produce estimate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 4 شماره
صفحات -
تاریخ انتشار 2013